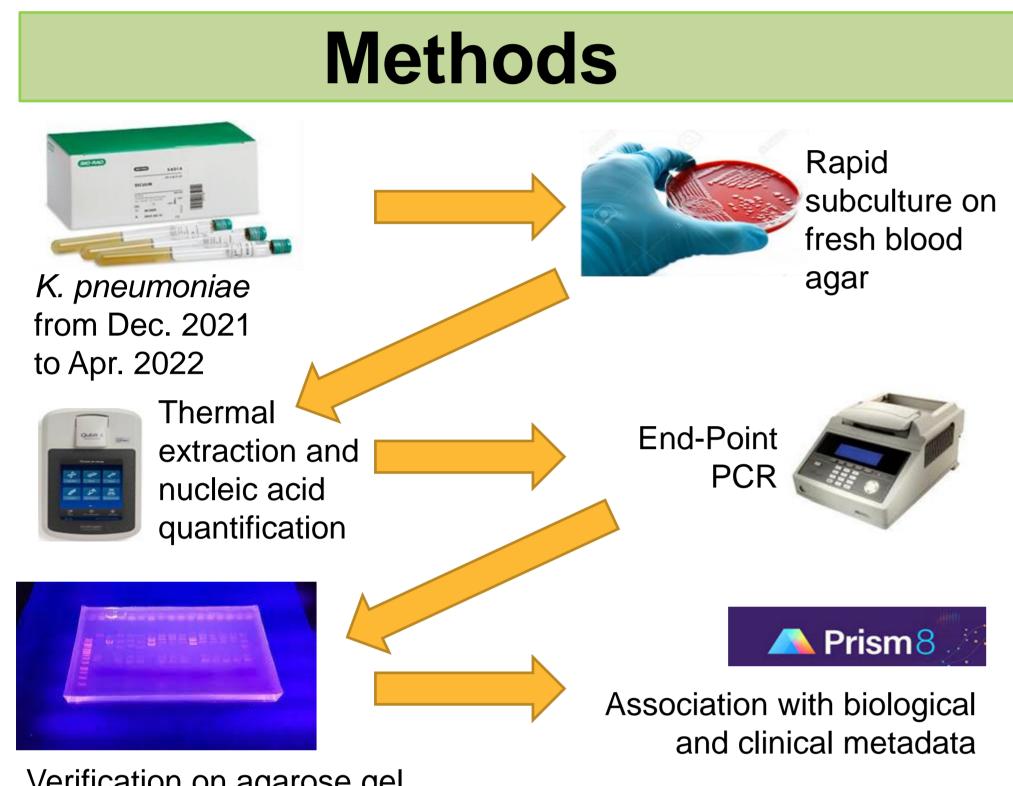


Inserm

Hypervirulent Klebsiella pneumoniae: prevalence, clinical presentation and antibiotic resistance in a French tertiary care hospital.

Jean-Philippe Martellosio^{1,2}, Thais Villers^{1,2}, Nabil Gastli³, Gael Rambault^{1,2,4}, Lauranne Broutin², Julie Cremniter^{1,2,4} Anthony Michaud², Chloé Plouzeau-Jayle², France Roblot^{1,2,4}, Christophe Burucoa^{1,2,4}, Maxime Pichon ^{1,2,4}

¹ University of Poitiers, Medicine and Pharmacy faculty, Poitiers, France ³Bacteriology Laboratory, hôpital Cochin, AP-HP. CUP, Paris, France


⁴ INSERM U1070, PHAR2 Pharmacology of Antimicrobial Agents and Antiibiotic resistance, Poitiers, France ² University Hospital of Poitiers, Poitiers, France

Contact: maxime.pichon@univ-poitiers.fr

Introduction

Klebsiella pneumoniae (KP) is a Gram-negative bacillus of enteric origin responsible primarily for healthcare-associated infections and infections in debilitated settings (1,2). The hypervirulent pathotype of KP (hvKP) has characteristics such as hypermucoviscosity, unique serotypes with high pathogenicity mainly mediated by virulence plasmids (3). Previous molecular biology studies have demonstrated the polyclonal and non-subtype associated nature of hvKP infections (4).

To determine the prevalence in clinical isolates of the different virulence genes defining hvKp in association with clinical presentation and antibiotic resistance

Verification on agarose gel

Figure 1. Analysis protocol. The strains studied (n=207) were identified consecutively from December 2021 to April 2022 in documented infections (samples received at the bacteriology laboratory of the infectious agent department of the University Hospital of Poitiers). Klebsiella pneumoniae were cultured on blood agar before extraction by heat shock (95°C 5 min). Extracts were then assayed/diluted (100 ng per reaction) before amplification and separation of PCR products on agarose gel.

Primer	T2214 (51 c 21)	en a la sufa se	EMBL	Amplicon
name	DNA sequence (5' to 3')	Target gene product/function	accession no.	size (bp)
ybtS_for	GACGGAAACAGCACGGTAAA	Siderophore	AB298504	242
ybtS_rev	GAGCATAATAAGGCGAAAGA			
mrkD_for	AAGCTATCGCTGTACTTCCGGCA	Adhesin type 3 fimbriae	EU682505	340
mrkD_rev	GGCGTTGGCGCTCAGATAGG			
entB_for	GTCAACTGGGCCTTTGAGCCGTC	Siderophore	CP000647	400
entB_rev	TATGGGCGTAAACGCCGGTGAT			
rmpA_for	CATAAGAGTATTGGTTGACAG	Regulator of mucoid phenotype A	X17518	461
rmpA_rev	CTTGCATGAGCCATCTTTCA			
K2_for	CAACCATGGTGGTCGATTAG	Capsular serotype K2 and	EF221827	531
K2_rev	TGGTAGCCATATCCCTTTGG	hypermucoviscosity phenotype		
kfu_for	GGCCTTTGTCCAGAGCTACG	Iron transport and phosphotransferase	AB115591	638
kfu_rev	GGGTCTGGCGCAGAGTATGC	function		
allS_for	CATTACGCACCTTTGTCAGC	Allantoin metabolism	AB115590	764
allS_rev	GAATGTGTCGGCGATCAGCTT			
iutA_for	GGGAAAGGCTTCTCTGCCAT	Siderophore	AY378100	920
iutA_rev	TTATTCGCCACCACGCTCTT			
magA_for	GGTGCTCTTTACATCATTGC	Capsular serotype K1 and	AY762939	1,283
magA_rev	GCAATGGCCATTTGCGTTAG	hypermucoviscosity phenotype		

Table 1. Multiplexed PCR protocol. Amplifications were enabled by primers published by Compain F. targeting nine genes at the same time (1). Verification on agarose gels have been performed at the same time. The gels were read blindly by two operators, with the advice of a third operator in case of discordance to allow alacaification

<u>classification.</u>	_						
	Eye E (n=1) Blood B (n=2		Pneumonia P	Abdomen A	Cutaneous C	Urinary U (n=146)	Multinla (n-21)
	Lye L (II-1)	BIOOU B (II-22)	(n=16)	(n=17)	(n=5)	Officially 0 (11–140)	Multiple (11–21)
Age (mean ; SEM)	65 (31)	65,9 (4,6)	57,4 (3,76)	60,1 (5,17)	60,6 (3,02)	64,1 (1,98)	69,8 (3,48)
SexRatio (F; M)	1/0	8/14	4/12	4/13	2/3	106/40	14/7

Table 2. Distribution of strains analyzed according to the nature of the clinical specimen (n=207).

Results

Gene (n;%)	Eye E (n=1)	Blood B (n=22)	Pneumonia P (n=16)	Abdomen A (n=17)	Cutaneous C (n=5)	Urinary U (n=146)	Multiple (n=21)
magA (n=113; 54,6%)	1 (100%)	13 (59,1%)	10 (62,5%)	8 (47,1%)	4 (80.0%)	77 (52,7%)	14 (66,7%)
iutA (n=80; 38,6%)	0	9 (40,9%)	11 (68,8%)	5 (29,4%)	1 (20.0%)	54 (37.0%)	6 (28,6%)
allS (n=100; 48,3%)	0	11 (50.0%)	7 (43,8%)	9 (52,9%)	3 (60.0%)	70 (47,9%)	7 (33,3%)
kfu (n=102; 49,3%)	0	11 (50.0%)	8 (50.0%)	9 (52,9%)	2 (40.0%)	72 (49,3%)	10 (47,6%)
K2 (n=105; 50,7%)	0	14 (63,6%)	10 (62,5%)	7 (41,2%)	2 (40.0%)	72 (49,3%)	9 (42,9%)
rmpA (n=49; 23,7%)	0	8 (36,4%)	4 (25.0%)	7 (41,2%)	1 (20.0%)	29 (19,9%)	3 (14,3%)
entB (n=189; 91,3%)	1 (100%)	16 (72,7%)	15 (93,8%)	17 (100%)	5 (100%)	135 (92,5%)	19 (90,5%)
mrkD (n=198; 95,7%)	1 (100%)	22 (100%)	16 (100%)	16 (94,1%)	5 (100%)	138 (94,5%)	20 (95,2%)
ybtS (n=65; 31,4%)	0	8 (36,4%)	6 (37,5%)	5 (29,4%)	2 (40.0%)	44 (30,1%)	4 (19.0%)
Number of gene per bacteria mean (SEM)	3 (-)	5,09 (0,33)	5,38 (0,31)	4,88 (0,44)	5.0 (0,71)	4,73 (0,12)	4,38 (0,26)

Table 3. Distribution of virulence genes according to the nature of the clinical isolation specimen. Strains isolated from respiratory specimens had a significantly higher number of virulence genes compared to strains isolated from multiple sites (p<0.05) or urine (p<0.1).

entB (n=189; 91,3%)	Pos	Neg	B/A	B/U	rmpA (n=49; 23,7%)		Pos	Neg	B/U	A/U
Eye E (n=1)	1 (0,5)	0 (-)			Eye E (n=1)		0 (-)	1 (0,6)		
Blood B (n=22)	16 (8,5)	6 (33,3)			Blood B (n=22)		8 (16,3)	14 (8,9)		
Pneumonia P (n=16)	15 (7,9)	1 (5,6)	0,0267		Pneu	monia P (n=16)	4 (8,2)	12 (7,6)		
Abdomen A (n=17)	17 (9,0)	0 (-)		0,012	Abdomen A (n=17)		7 (14,3)	10 (6,3)	0,0987	
Cutaneous C (n=5)	5 (2,6)	0 (-)			Cutaneous C (n=5)		1 (2,0)	4 (2,5)		0,0619
Urinary U (n=146)	135 (71,4)	11 (61,1)			Urir	Urinary U (n=146)		117 (74,1)		
Multiple (n=21)	19 (10,1)	2 (11,1)			Mι	Multiple (n=21)		18 (11,4)		
iutA (n=80; 38,6%)	Pos	Neg	P/A	P/U	M/P	T			4 ••	4.
Eye E (n=1)	0 (-)	1 (0,8)				Table 4.	Individ	dual dis	stribu	ition
Blood B (n=22)	9 (11,3)	13 (10,23)				and association of virulence				
Pneumonia P (n=16)	11 (13,8)	5 (3,9)	0,0381			denes ad	cording	n to the	natiu	re of
Abdomen A (n=17)	5 (6 3)	12 (9 4)	0,0361	281	genes according to the natu			iiatui	O OI	

the clinical isolation specimen.

	(n=184)	(n=23)	value
Number of gene per bacteria (mean; SEM)	4,76 (0,11)	5,13 (0,30)	0,26
Gene name (n)			
magA (n=113; 54,6%)	99 (53,8%)	14 (60,8%)	0,66
iutA (n=80; 38,6%)	73 (39,7%)	7 (30,4%)	0,5
allS (n=100; 48,3%)	88 (47,8%)	12 (52,2%)	0,83
kfu (n=103; 49,8%)	89 (48,4%)	13 (56,5%)	0,51
k2 (n=106; 51,2%)	91 (49,5%)	14 (60,9%)	0,38
rmpA (n=49; 23,7%)	42 (22,8%)	7 (30,4%)	0,44
entB (n=189; 91,3%)	169 (91,8%)	20 (87.0%)	0,43
mrkD (n=199; 96,1%)	175 (95,1%)	23 (100%)	0,6
ybtS (n=65; 31,4%)	55 (29,9%)	10 (43,5%)	0,23

Cure

death

R (n=34) S (n=175) pvalue

4,82 (0,30) 4,83 (0,11) 0,97

72 (41,1)

43 (24,6)

21 (61,8) 92 (52,6)

15 (44,1) 85 (48,6)

13 (38,2) 89 (50,9)

19 (55,9) 86 (49,1)

33 (97,1) 156 (89,1)

32 (94,1) 166 (94,9)

8 (23,5)

6 (17,6)

Table 5. Distribution of virulence genes according to lethality.

Cephalosporin

ımber of gene per bacteria

mrkD was significantly more associated with <i>iutA</i> and <i>magA</i> (p<0.05 and p<0.1). entB and iutA were significantly more frequently found in strains isolated from blood or respiratory sources (p<0.05). rmpA tended to be found in strains isolated from abdominal or urinary samples (p<0.1).									
	Community	Healthcare-		CoAmoxiClav	R (n=59)	S(
	Community- acquired	associated	p-value	Number of gene per bacteria (mean; SEM)	4,69 (0,20)	4,8			

	Community-	Healthcare-	
	acquired	associated	p-value
	infection (n=160)	infection (n=47)	
Number of gene per bacteria	4 71 (0 12)	E 22 (0.20)	0.0262
(mean; SEM)	4,71 (0,12)	5,23 (0,20)	0,0362
Gene name (n)			
magA (n=113; 54,6%)	84 (52,5%)	29 (61,7%)	0,32
iutA (n=80; 38,6%)	62 (38,8%)	18 (38,3%)	1
allS (n=100; 48,3%)	80 (50.0%)	20 (42,6%)	0,41
kfu (n=103; 49,8%)	77 (48,1%)	24 (51,1%)	0,74
<i>k2</i> (n=106; 51,2%)	76 (47,5%)	29 (61,7%)	0.0986
rmpA (n=49; 23,7%)	33 (20,6%)	16 (34.0%)	0.0778
entB (n=189; 91,3%)	145 (90,6%)	44 (93,6%)	0,77
mrkD (n=199; 96,1%)	152 (95.0%)	47 (100%)	0,2
ybtS (n=65; 31,4%)	45 (28,1%)	20 (42,6%)	0,0741

1 (1,3)

54 (67,5)

6(7,5)

Cutaneous C (n=5)

Urinary U (n=146)

Multiple (n=21)

4 (3,1)

92 (72,4)

15 (11,8)

Table 6. Distribution of virulence genes according to the nosocomial or non-nosocomial origin of the strain **studied.** Strains involved in community-acquired infections had significantly fewer virulence genes than healthcare-associated infection strains (p<0.05). The k2, rmpA and ybtS genes tended to be associated with nosocomial origin (p<0.1).

COATHOXICIAV	K (11-33)	3 (11-140)	pvalue	Серпагозропп
Number of gene per bacter (mean; SEM)	ia 4,69 (0,20	4,88 (0,12)	0,41	Number of gene per b (mean; SEM)
Gene name (n)				Gene name (n)
magA (n=113; 54,6%)	37 (62,7%	76 (51,4%)	0,17	magA (n=113; 54,6%)
iutA (n=80; 38,6%)	14 (23,7%		0.0069	iutA (n=80; 38,6%)
allS (n=100; 48,3%)	26 (44,1%		0,53	allS (n=100; 48,3%)
kfu (n=102; 49,3%)	23 (39.0%	80 (54,1%)	0.0644	kfu (n=102; 49,3%)
k2 (n=105; 50,7%)	28 (47,5%	78 (52,7%)	0,54	k2 (n=105; 50,7%)
rmpA (n=49; 23,7%)	13 (22%)	36 (24,3%)	0,86	rmpA (n=49; 23,7%)
entB (n=189; 91,3%)	57 (96,6%) 132 (89,1%)	0,11	entB (n=189; 91,3%)
mrkD (n=198; 95,7%)	58 (98,3%) 141 (95,3%)	0,44	mrkD (n=198; 95,7%)
ybtS (n=65; 31,4%)	21 (35,6%	44 (29,7%)	0,41	ybtS (n=65; 31,4%)
Cotrimoxazole	R (n=37)	S (n=169)	pvalue	Toble 7
Number of gene per bacteria (mean; SEM)	4,51 (0,29)	4,89 (0,11)	0,16	Table 7.
Gene name (n)				the presen
magA (n=113; 54,6%)	25 (67,6%)	88 (52,1%)	0,1	l
iutA (n=80; 38,6%)	7 (18,9%)	73 (43,2%)	0.0084	j <i>iutA</i> was s
allS (n=100; 48,3%)	16 (43,2%)	84 (49,7%)	0,59	with resist
kfu (n=102; 49,3%)	13 (35,1%)	90 (53,3%)	0.0685	
k2 (n=105; 50,7%)	18 (48,6%)	88 (52,1%)	0,72	Clavulanic <i>A</i>
rmpA (n=49; 23,7%)	5 (13,5%)	44 (26%)	0,14	(p<0.05).
entB (n=189; 91,3%)	35 (94,6%)	154 (91,1%)	0,74	, ,,
mrkD (n=198; 95,7%)	37 (100%)	162 (95,9%)	0,36	
ybtS (n=65; 31,4%)	11 (29,7%)	54 (32%)	0,85] susceptibilit

/btS (n=65;	31,4%)		12 (35,3)	53 (30,3)	0,55
Table	7.	P	resen	tation	of
antibi	otic	resist	tance	based	don
the p	resen	ce of	virule	ence ge	enes.
<i>iutA</i>	was	signifi	cantly	assoc	iated
with	resis	tance	to	Amoxi	cillin-
Clavu	lanic /	Acid, a	and Co	otrimox	azole
(p<0.0))5).	iutA	tende	ed to	be
assoc	iated	witl	n ce	phalos	porin
susce	ptibilit	ty (p<0	0.1). <i>K</i>	<i>(fu</i> tend	ed to
be as	ssocia	ited v	vith re	esistand	e to
Amox	icillin-	Clavu	lanic	Acid	and

cotrimoxazole (p<0.1).

Discussion

Among the virulence arsenal of KP, two genes have been initially associated with invasive infections ie. magA (mucosity-associated gene A) and rmpA (regulator of mucoid phenotype A). (5). Epidemiological studies have shown that hypervirulent KP have iron acquisition systems encoded by entB whose receptors are encoded by iutA, are distinct from Yersiniabactin (encoded by ybtS) (6, 7, 8). allS (allantoin metabolism) is associated with strains involved in hepatic abscesses (16). mrkD is involved in adhesion to extracellular matrices (9)

Conclusion

This cohort performed on all strains consecutively isolated in a medical laboratory brings a new light on the genomic arsenal of virulence of KP. The high prevalence of certain genes (mrkD) and entB) (already suggested in the literature) raises the need for new studies to deepen our knowledge of their pathophysiology and to allow an appropriate diagnosis.

Ma LC. et al. J. Infect. Dis. 2007. Hsieh PF, et al. J. Infect. Dis. 2008

Jagnow J. et al. Microbiology 2003