A PK/PD type modelling approach to support time-kill data interpretation of cefoxitin for the treatment of *Mycobacterium abscessus*

Shachi Mehta^{1,2*}, Vincent Aranzana-Climent^{1,2}, Blandine Rammaert^{1,2,3}, Nicolas Grégoire^{1,2,3}, Sandrine Marchand^{1,2,3}, Julien M. Buyck^{1,2}, William Couet^{1,2,3} 1. Université de Poitiers, Poitiers, France 2. INSERM U1070, Poitiers, France 3. Service de Toxicologie et de Pharmacocinétique, CHU de Poitiers, France *E-mail: shachi.mehta@univ-poitiers.fr

Materials/Methods

Introduction

- > Mycobacterium abscessus (Mab) is the most multidrug-resistant, rapid growing mycobacteria, responsible for major pulmonary infections worldwide (1).
- > Current regimens including parenteral administrations of cefoxitin (FOX) in combination with amikacin and clarithromycin raise compliance problems and are frequently associated with high failure and development of resistance.
- > Intratracheal administration (nebulization) of FOX offers a biopharmaceutical advantage over intravenous administration (2).
- \succ FOX is known to degrade *in vitro* (3). Consequently, time-kill assays performed up to more than a week and MIC interpretation over 3 days give a de facto misleading impression of the true extent of FOX activity.

Ferro et al. (5) identified a FOX resistant (R) subpopulation preexisting at time 0 growth inhibition model with single homogeneous bacterial population (S) Fox is bacteriostatic against *Mab* (4)

✓ FOX Degradation \rightarrow first order process

 $(t_{1/2}: 1.5 \text{ days})$

Time (days)

Results & Discussion

✓ Bacterial regrowth because of FOX degradation & existence of R subpopulation

CHU de Poiti

- IC₅₀₈: 16.2 mg/L ; IC₅₀₈: 252 mg/L
- \checkmark Maximum unbound Css = 5.5 mg/L in humans after an infusion of 2g over 8h, which is not enough to induce a decay of either subpopulation (6).
- ✓ FOX concentration > 300 mg/Lmay kill both subpopulations

Fig. 4: Visual Predictive Checks (VPCs) for the final PK/PD type model with correction for FOX degradation against Mab

Conclusion & perspective

- \checkmark This study suggests that FOX dosing regimens used in clinic for the treatment of *M. abscessus* are not sufficient to reduce the bacterial burden.
- \checkmark FOX by nebulization may allow to achieve high concentration at infection site.
- \checkmark Also FOX in combination using nebulization could resolve this situation.

References

- 1) Lee et al., *Emerg Infect Dis*, 2015
- 2) Mehta et al., ECCMID 2018, P2204
- 3) Rominski et al., J Antim chem, 2017
- 4) Lefebvre et al., *J Antim chem*, 2016
- 5) Ferro et al., Antim Agen chem, 2016
- 6) Czaja et al., Antim Agen chem, 2014

