Introduction

- *Pseudomonas aeruginosa* (PA) develop as biofilms in chronic pulmonary infections in patients with cystic fibrosis.
- Biofilms are aggregates of PA (50-100 μm) entrapped in a self-produced matrix of anionic polymers (alginate, DNA…), often surrounded by patient mucus.
- The activity of cationic antibiotics "ATB" such as tobramycin (TOB) and colistin (COL) against these biofilms is low in-vivo because of their interactions with the matrix.

Purpose

- Develop an in-vitro model composed of anionic polymers to find an in-vivo model of pulmonary PA biofilms to evaluate the efficacy of inhaled ATB used to treat chronic pulmonary infections.

Material & Methods

- A bioluminescent strain of PA (PAO1-LUXCDEBA) was incorporated into large calcium alginate beads (σ = 1200 μm). These beads were dispersed in artificial sputum medium (ASM) to produce an in-vitro PA pulmonary biofilm model.
- The effectiveness of ATB (TOB and COL) was tested on the *in-vitro* PA pulmonary biofilm by measuring:
 - PA bioluminescence kinetics during 40H
 - Bacterial concentrations (log10 CFU/ml) after 40 h of exposure to ATB. These values were plotted as a function of ATB concentrations and modelled using the following inhibitor Emmax model:

 \[CFU(t) = CFU_0 \times \left(1 - \frac{C}{C_{50} + C}\right)^\gamma \]

 - The index with the best fit and low value of \(C_{50} \) is more effective.
 - The development of resistance to these ATBs among surviving PA was evaluated by measuring the MIC.

Results

Evaluate the efficacy of ATB on the in-vitro model of PA pulmonary biofilm

- Above 10 times the MIC, the decrease in bioluminescence was greater and faster with COL compared to TOB.

Conclusion & Perspectives

- Bioluminescence measurements and colony counts show that COL was more effective than TOB on an *in-vitro model of PA pulmonary biofilm*, suggesting a potential better clinical efficacy of COL than TOB when treating these biofilms.
- PA may persist in biofilms even when exposed to high concentration of TOB without developing resistance to this antibiotic.

References

2. Majken Sønderholm et al, npj Biofilms and Microbiomes vol 4, 2018
3. Pedersen S. et al., APMS 1990
4. S.D. Dinesh, Artificial sputum medium, Protoco. excl, 2010