

Assessing the Therapeutic Potential of an Apramycin-Gallium Combination for Treating Acinetobacter baumannii Lung Infections

Anissa Benkhaled¹, Célia Martin Demier¹, Sandrine Marchand^{1,2}, Frederic Tewes¹

¹ Université de Poitiers, PHAR2 - INSERM U1070, Poitiers, France

² CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France

Background

Acinetobacter baumannii (A. baumannii) is a opportunistic pathogen commonly linked to pulmonary infections, especially in intensive care unit. A. baumannii has been designated by the WHO as a critical priority pathogen requiring the development of new therapies due to its extensive antibiotic resistance mechanisms. Apramycin (APR), an aminoglycoside with a unique chemical structure, has shown the ability to evade most resistance mechanisms encountered by other aminoglycosides (Figure 1). Gallium, in its Ga(III) form, exhibits bactericidal effects against various Gram-negative bacteria by mimicking ferric iron, which is essential in iron-dependent bacterial pathways. Since aminoglycosides have the potential to complex with metals, we hypothesize that APR and Ga(III) could form a stable complex with enhanced efficacy against A. baumannii.

Tobramycin Amikacin

Figure 1: Apramycin, Tobramycin and Amikacin structures

Materials and Methods

All experiments were conducted using an APR-Ga(III) combination at a 1:1 molar ratio. The Ga(III) solution, prepared by dissolving gallium nitrate in water, was used for the combination and all experimental procedures.

- MICs were measured in iron-depleted MHB (ID-MHB) at **37°C** and read after **24 hours**.
 - 24 A.baumannii clinical isolates were tested (n=2-10)

- Amikacin and Tobramycin combination were assessed on 5 clinical strains
- APR-Ga(III) were also assessed on 3 isolates of each E. coli, K. pneumoniae and P. aeruginosa

3 To assess the bactericidal effect, Time-Kill Curves (TKC) were performed on 4 clinical isolates with different MIC values from 8 to 128 mg/L (n= 2-6) • Sampling at: TO, T2, T4, T6, T24 and T32 • Dilution • Plating • Counting Areas under the curves of TKCs were used to compare the power of APR and APR-Ga(III) using a Emax model (\not and EC_{50}) $E_{(c)} = E_{max} - \left(\frac{(E_{max} - E_{min})xC^{\gamma}}{EC_{50}^{\gamma} + C^{\gamma}}\right)$ $E_{(c)} = \text{Effect for a concentration } C$

 EC_{50} = Concentration of treatment

/ = Shape parameter

producing 50% of maximum response

Serial MIC assays were conducted to evaluate the impact of the combination on resistance development in 4 clinical isolates of A.baumannii (n=2-6)

 \rightarrow Over 25 and 16 days

🗕 CTRL 📥 APR-Ga 📥 APR 16 mg/L 8 mg/L 0 mg/L 2.5 0.0 32 mg/L 128 mg/L 64 mg/L **___** 10.0₁

 E_{max} = Maximal effect

 E_{min} = Minimal effect

C'' = Concentration of treatment

Figure 2: Distribution of MIC values for APR and Ga against A. baumannii isolates, either alone or in a 1:1 % molar ratio combination.

As shown in Figure 2, treatment with the APR-Ga combination resulted in a **32- to 4096-fold** reduction in the APR MIC against A. baumannii isolates (n=24). No reduction was observed in

Figure 3: Time-kill curves obtained with APR alone and the APR-Ga combination against A. baumannii isolate 454 (n=6). Means are represented by lines and standard deviations are represented by red or blue areas.

Figure 4: Emax model analysis of time-kill curves obtained with APR alone and the APR-Ga combination against *A. baumannii* isolates 454 (n=6). Table shows values EC50 and MIC for 4 *A. baumannii* isolates (n=2-6).

Figure 5: Serial MIC of APR or the APR-Ga combination against A. *baumannii* isolates (n=2/5). Means are represented by lines and standard deviations are represented by grey areas.

As shown in Figure 5, treatment with APR alone at sub-MIC resulted in a twofold increase in MIC by day 2 in two A. baumannii isolates, with a gradual rise to 64-128 mg/L at the end of the experiment.

In contrast, when treated with the APR-Ga combination at sub-MIC, the increase only reaches **16-32 mg/L by the end of the** experiment, which corresponds to the potential APR ECOFF concentration (1).

After 10 passages in pure medium, the MIC were between 64-512 mg/L for APR treatment and between 16-32 mg/L for APR/Ga

 \rightarrow This combination treatment limits the increase in APR MIC at high concentrations. Even after 16 or 25 days of treatment

<i>E. coli</i> or <i>K. pneumoniae</i> . A slight 4-fold decrease in the APR MIC was observed in <i>P. aeruginosa</i> . This synergy was not observed when tobramycin or amikacin were combined with Ga(III) .	The analysis of the TKCs, shown in Figure 3, was conduct using an inhibitory Emax model, as illustrated in Figure 4. analysis shows that the concentration of APR required to 50% of A. baumannii (EC ₅₀) is reduced at least by half w treated with the combination.	at sub-MIC levels, the MIC remain This concentration. kill	is below the ECOFF
→ Specific action toward A. baumannii	The combination treatment demonstrates a two-factoring increase in bactericidal effectiveness compared to APR alon	old e.	
Conclusion The apramycin-gallium combination significantly of <i>A. baumannii strains</i> . By markedly improving apramycin's effectiveness in clinical isolates. Given its promising therapeutic	enhances the <i>in vitro</i> efficacy of apramycin against <i>A. bauman</i> (up to a 4096-fold reduction in MIC), the APR-Ga combination c potential, the APR-Ga(III) combination will soon undergo <i>in v</i>	nii, with this effect appearing to be specific to helps delaying the development of resistance vo evaluation in animal infection models.	This research was supported by the JPIAMR project APRINHA (reference number: ANR-22-AAMR- 0002)
ESCMID GIO	Congress of the E Microbiology and	European Society of Clinical Infectious Diseases	