

Genetic characterization of lipopolysaccharide-modifying genes involved in polymyxin resistance in *E. coli* and *K. pneumoniae* carrying MCR-1 by sequential time-kill experiments approach

Hariyanto IH

INSERM U1070 – Pharmacology of Antimicrobial Agents POITIERS

15^e congrès national de la SFM, 30 septembre - 2 octobre 2019, Paris

Occurrence of carbapenemase-producing Enterobacteriaceae (*K.pneumoniae* and *E. coli*) in 38 European countries

European Centre for Disease Prevention and Control, Stockholm, 2016

European Antimicrobial Resistance Surveillance Network (EARS-Net), 2017

Antibiotic development and antimicrobial resistance

or

Re-introduce 'old' antibiotics

Colistin (polymyxin E) & polymyxin B

- Polymyxins class; Cationic Antimicrobials Peptides (CAMPs)
- In 1970s, it was replaced by newer antibiotic because of its side effect (nephrotoxicity >20%)*
- Early 1990s, It is increasingly being used as a "Last resort drug" to overcome infections caused by multidrug-resistant GNB (MDR(-))
- In particular *P. aeruginosa, A. baumannii, K. pneumoniae* & *E. coli*
- Infections caused by GNB are the most difficult infections to treat because of their ability to develop into the intrinsic drug resistance

*Expert Rev Anti Infect Ther. 2012

^A Dortet L, et al. Émergence de la résistance à la colistine chez les entérobactéries: une brèche dans le dernier rempart contre la pan-résistance. Journal des Anti-infectieux (2016)

Polymyxin Resistance Reports

Journal of Cystic Fibrosis 7 (2008) 391-397

Spread of colistin resistant non-mucoid *Pseudomonas aeruginosa* among chronically infected Danish cystic fibrosis patients $\stackrel{\circ}{\approx}$

Helle Krogh Johansen ^{a,b,*}, Samuel M. Moskowitz ^c, Oana Ciofu ^b, Tacjana Pressler ^a, Niels Høiby ^{a,b}

^a Department of Clinical Microbiology, Dept. 9301 and Danish Cystic fibrosis Centre, Dept. 5003, Rigshospitalet, Copenhagen Ø, Denmark ^b Institute of International Health, Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen Ø, Denmark ^c Division of Pulmonary Medicine, Children's Hospital and Regional Medical Centre and University of Washington School of Medicine, Seattle, Washington 98195, USA

> Received 30 September 2007; received in revised form 27 January 2008; accepted 4 February 2008 Available online 20 March 2008

> > www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN Evolved resistance to colistin and its loss due to genetic reversion in *Pseudomonas aeruginosa*

Received: 13 October 2015 Ji-Young Lee, Young Kyoung Park, Eun Seon Chung, In Young Na & Kwan Soo Ko Accepted: 20 April 2016

JOURNAL OF CLINICAL MICROBIOLOGY, May 2009, p. 1611–1612 0095-1137/09/\$08.00+0 doi:10.1128/JCM.02466-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Decreased Susceptibility to Polymyxin B during Treatment for Carbapenem-Resistant Klebsiella pneumoniae Infection $^{\nabla}$

J Antimicrob Chemother 2012; **67**: 1607–1615 doi:10.1093/jac/dks084 Advance Access publication 22 March 2012 Journal of Antimicrobial Chemotherapy

Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies

Yun Cai, Dong Chai, Rui Wang*, Beibei Liang and Nan Bai

Department of Clinical Pharmacology, the PLA General Hospital, Beijing 100853, People's Republic of China

BRAZ J INFECT DIS 2017;21(1):98-101

The Brazilian Journal of INFECTIOUS DISEASES

www.elsevier.com/locate/bjid

Brief communication

INFECTIOUS DISEASES

Flávia Rossi^{a,b,*}, Raquel Girardello^{a,b}, Ana Paula Cury^{a,b}, Thais Sabato Romano Di Gioia^{a,b}, João Nóbrega de Almeida Jr^{a,b}, Alberto José da Silva Duarte^b

^a Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina, Divisão Laboratório Central, São Paulo, SP, Brazil ^b Universidade de São Paulo, Faculdade de Medicina, Medicina Laboratorial – LIM-03, São Paulo, SP, Brazil

All Reports from clinical isolates

LPS Modification

Olaitan et al. 2014. Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy

Results

Plasmid-Mediated Resistance

< Previous Article

Volume 16, No. 2, p161-168, February 2016

Next Article >

Articles

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu, BS[†], Yang Wang, PhD[†], Prof Timothy R Walsh, DSc, Ling-Xian Yi, BS, Rong Zhang, PhD, James Spencer, PhD, Yohei Doi, MD, Guobao Tian, PhD, Baolei Dong, BS, Xianhui Huang, PhD, Lin-Feng Yu, BS, Danxia Gu, PhD, Hongwei Ren, BS, Xiaojie Chen, MS, Luchao Lv, MS, Dandan He, MS, Hongwei Zhou, PhD, Prof Zisen Liang, MS, Prof Jian-Hua Liu, PhD I

	Year	Positive isolates (%)/number of isolates
Escherichia coli		
Pigs at slaughter	All	166 (20.6%)/804
Pigs at slaughter	2012	31 (14-4%)/216
Pigs at slaughter	2013	68 (25-4%)/268
Pigs at slaughter	2014	67 (20.9%)/320
Retail meat	All	78 (14.9%)/523
Chicken	2011	10 (4-9%)/206
Pork	2011	3 (6·3%)/48
Chicken	2013	4 (25.0%)/16
Pork	2013	11 (22.9%)/48
Chicken	2014	21 (28.0%)/75
Pork	2014	29 (22·3%)/130
Inpatient	2014	13 (1.4%)/902
Klebsiella pneumor	niae	
Inpatient	2014	3 (0.7%)/420

MCR : Mobilizable Colistin Resistance

 \rightarrow Phosphoethanolamine transferase (addition of PEtN to lipid A)

MCR-1

Objective

Role of MCR-1 in the development of additional adaptive resistance to polymyxins by an original approach of sequential time-kill study

MICs Result (mg/L)

Bacteria	E. coli J53		K. pneumoniae R2292	
Antibiotic	WT	+ MCR-1	WT	+ MCR-1
Colistin (CST)	0,25	2-4	0,25	2
Polymixin B (PMB)	0,25	2	0,25	2

 $WT : Wild-type (non-carrying-MCR-1) \\ + MCR-1 : inserted by plasmid MCR-1 \\ Susceptible : MICs < 2 <math>\mu$ g/mL \\ Resistant : MICs \geq 2 μ g/mL

TIME-KILL CURVE ANALYSIS

Introduction

- Colistin (CST) & Polymyxin B (PMB) shown rapid and concentration-dependent bacterial killing during Time-Kill Curve (TKC)
- The highest concentration of antibiotic where bacterias can regrowth over 10⁶ CFU/mL after 30 hours considered as MAXIMUM REGROWTH CONCENTRATION
- For all WT Strains (not-carrying-MCR-1), the regrowth was stable and observed at 0,5x MIC (0.125 mg/L) in both of 1st and 2nd TKC

Sequential Time-Kill Curve Polymyxins vs Wild-type

Genes expression level after sequential TKC for WT strains

Fig. Relative expression of genes for all WT strains after sequential Time-Kill Curves (n=3)

- > No different gene expression was shown between 1st and 2nd TKC for both species
- > Down-expression of *phoP* and over-expression of *lpxM* for *E. coli* in CST & PMB
- Presumably were triggered by polymyxins pressure

Mechanism of Resistance

Results

Population analysis profiles (PAPs)

MICs (mg/L) after Sequential Time-Kill Curve

Strain	Colistin	Polymyxin B	
EC	0,25	0,125	
EC_1st TKC	0,25	0,25	
EC_2nd TKC	0,25	0,25	
EC_MCR-1	2	2	
EC_MCR-1_1st TKC	8	4	
EC_MCR-1_2nd TKC	16	8	
EC_MCR-1_3rd TKC	32	16	
КР	0,25	0,25	
KP_1st KC	0,25	0,25	
KP_2nd KC	0,25	0,25	
KP_MCR-1	2	2	
KP_MCR-1_1st TKC	16	8	
KP_MCR-1_2nd TKC	64	16	
KP_MCR-1_3rd TKC	512	128	

OW-Level Resistance

HIGH-Level Resistance

EC : *E. Coli* J53

KP : *K. Pneumoniae* R2292

EC_MCR-1 : E. Coli carrying-MCR-1

KP_MCR-1 : K. Pneumoniae carrying-MCR-1

DNA Sequencing

 7 genes were determined
Analysis was performed for all strains before and after sequential TKC

NO mutations were found

Gene expression profiles by RT-qPCR Before Sequential TKC (no contact with antibiotic)

All genes had over-expressed in *E.coli* since MCR-1 plasmid was firstly inserted

> NO overexpression in *K.pneumoniae_MCR-1*

Fig. Relative expression of genes for *E.coli* J53 and *K.pneumoniae* R2292 carrying-MCR-1 before Sequential Time-Kill Curves was performed (n=3) *(P < 0.05)</p>

Methods

Results

Plasmid-Mediated Resistance

Facilitated L-Arabinose addition to LPS ?

Other protein
Formation of type IV pilus
Transfer associated
Plasmid stability
Plasmid replication
Insertion sequence
Antimicrobial resistance
Hypothetical protein

MCR : Mobilizable Colistin Resistance

 \rightarrow Phosphoethanolamine transferase (addition of PEtN to lipid A)

*K. pneumoniae*_MCR-1 well adapted better than EC_MCR-1 in both polymyxins antibiotics

CONCLUSION

□ The presence of MCR-1 facilitated the step-by-step resistance

□ Polymyxin B less induce the resistance than in colistin

PERSPECTIVE

- Reversibility study (up to 2-6 months)
- > Whole genome sequencing
- Structural changes of lipid A

Université de Poitiers

La science pour la santé From science to health

Special Thanks

Acknowledgements

Pr William COUET

Dr Julien BUYCK

Déclaration de conflit d'intérêt

Pour cette présentation, je déclare n'avoir aucun conflit d'intérêt.

MERCI!

