

2210

In vitro study of antibiotic combinations efficacy on multiresistant Achromobacter xylosoxidans strains

Grace Akrong¹ (grace.akrong@univ-poitiers.fr), William Couet^{1, 2}, Sandrine Marchand^{1, 2}, Julien Buyck¹ ¹INSERM U1070, Université de Poitiers, Poitiers, France ²Service de Pharmacocinétique, CHU Poitiers, Poitiers, France

INTRODUCTION

- Achromobacter xylosoxidans is an emerging Gram-negative opportunistic pathogen in cystic fibrosis (CF) patients¹.
- These infections are difficult to treat due to the natural resistance to a wide range of antibiotics². Moreover, **acquired resistances** are frequent in CF thus **limiting therapeutic options**³.
- The reasons for this emergence are still unknown and the therapeutic guidelines are very limited⁴.
- **PURPOSE**: To determine the efficacy of **antibiotic combinations** on multiresistant A. xylosoxidans isolates from non-CF and CF patients.

METHODS

- Five A. xylosoxidans strains isolated from non CF patients were used in this study (NCF1, NCF2, NCF3, NCF4 and NCF5 strains) and three A. xylosoxidans strains isolated from the sputum of a CF patient at different steps of treatment (CFa, CFb and CFc strains) were used as well.
- The study was performed according to these following steps:
 - MICs were determined for all strains by broth microdilution method according to EUCAST and BSAC guidelines (Table 1).
 - Screening of different combinations used in clinic⁵ and unconventional combinations including rifampicin or piperacillin was performed by checkerboard (Table 2). Fractional inhibitory concentration index (FIC_i) values were determined according to the following equation:

$$FIC_i = FICA + FICB = \frac{MIC_{A+B}}{MIC_A} + \frac{MIC_{A+B}}{MIC_B}$$

The FIC_i was interpreted as follows: FIC_i \geq 0.5 synergy, 0.5 < FIC_i > 2 additivity, FIC_i \geq 2 antagonism.

3. Time-Kill curves (TKC) were performed with the promising combinations over CFa and CFc strains (Fig. 1&2).

RESULTS

1. Susceptibility test of single antibiotics

Table1. MICs results for different A. xylosoxidans isolates										
	Breakpoints		Non CF strains					CF strains		
	S	R	NCF1	NCF2	NCF3	NCF4	NCF5	CFa	CFb	CFc
Gentamicin (GEN) ^a	≤ 4	> 4	2	<1	16	8	8	64	256	64
Tobramycin (TOB) ^a	≤ 4	> 4	4	1	16	8	8	64	256	64
Ciprofloxacin (CIP)a	≤ 0.5	> 0.5	0.25	0.5	1	4	1	4	2	4
Colistin (CST) ^a	≤ 2	> 2	4	<1	2	1	2	8	16	16
Meropenem (MER) ^a	≤ 2	> 8	<0.25	<0.25	<0.25	<0.25	<0.25	0.5	64	128
Piperacillin (PIP) ^a	≤ 16	> 16	0.125	0.5	0.5	2	0.5	2	512	256
Chloramphenicol (CHL)b	≤8	> 8	8	8	8	8	8	4	4	4
Minocycline (MIN) ^c	≤ 16	> 16	0.25	0.25	1	1	1	1	1	2
Rifampicin (RIF) ^c	≤8	> 8	64	64	64	64	64	64	64	64
^a According to the FUCAST breakpoints for <i>Pseudomonas geruginosa</i> . The European Committee on Antimicrobial Susceptibility										

^aAccording to the EUCAST breakpoints for *Pseudomonas aeruginosa*. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1, 2018. ^bAccording to the EUCAST breakpoints for *Enterobacteriacea*

^cAccording to the BSAC breakpoints (Version 11.1 May 2012) for *Escherichia coli*

- All strains were susceptible to minocycline and chloramphenicol but resistant to rifampicin.
- 3 different resistance profiles were identified:
- NCF1 and NCF2 strains were susceptible to all tested antibiotics.
- NCF3, NCF4, NCF5 and Cfa strains were resistant to ciprofloxacin and aminoglycosides.
- CFb and CFc strains were resistant to all tested antibiotics.
- > NCF1, NCF3, Cfa, CFb and CFc strains were selected for checkerboard due to their different resistance profiles

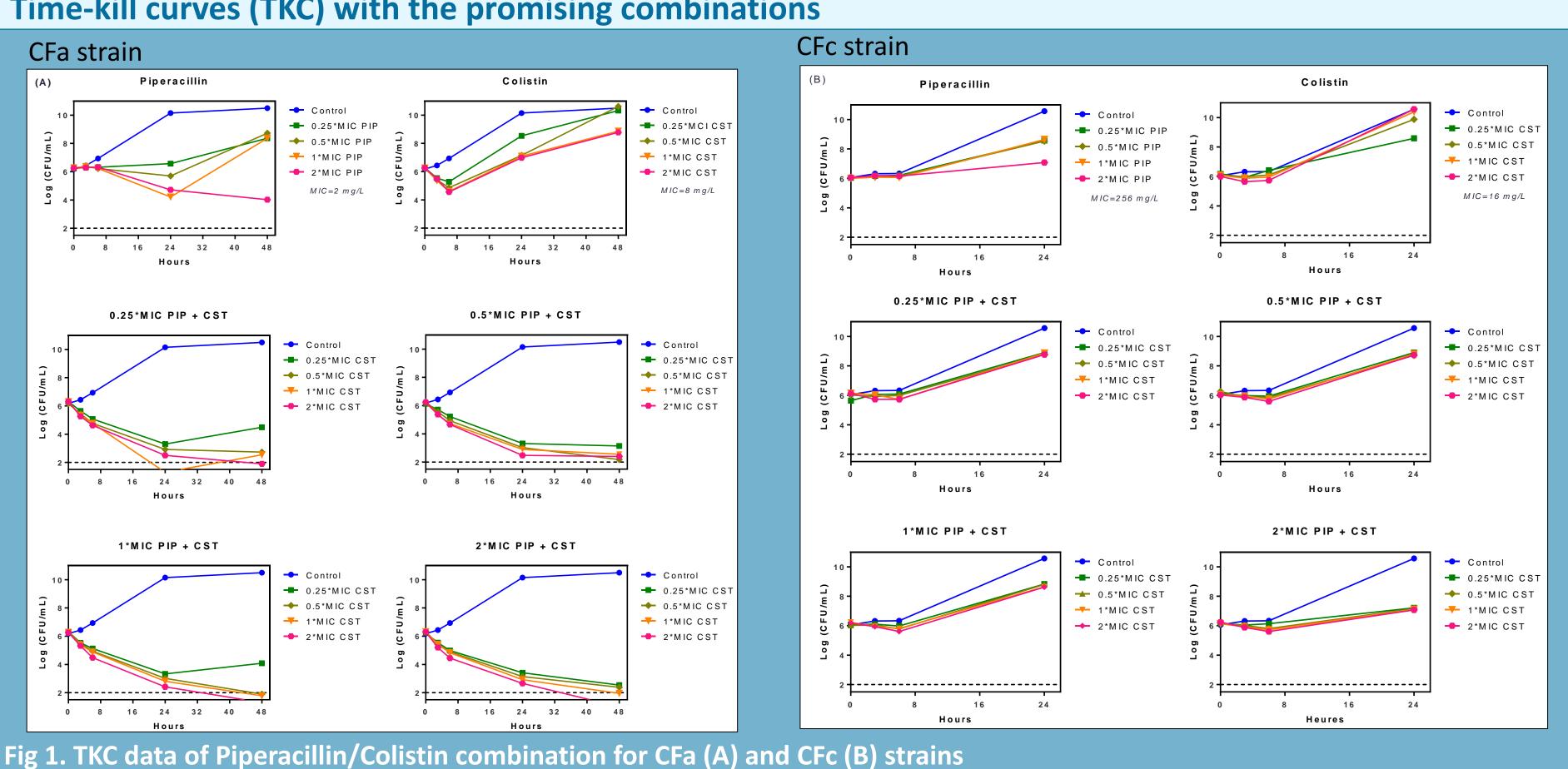

2. Screening of antibiotic combinations

Table2. Effect of the antibiotic combinations										
	Non CF	strains	CF strains							
	NCF1	NCF4	CFa	CFb	CFc					
MIN/CHL	0.31	0.53	0.75	0.63	0.63					
MER/CIP	ND	ND	1.5	1	0.75					
TOB/PIP	0.13	1.25	0.31	0.16	0.63					
RIF/TOB	0.75	1	0.31	0.28	0.28					
RIF/IMI	0.63	0.75	0.33	0.13	0.27					
RIF/CST	0.63	0.75	0.25	0.28	0.56					
RIF/PIP	1.25	1.5	0.16	0.31	2					
PIP/CST	0.5	0.19	0.26	0.26	0.5					

The values correspond to the minimum FIC_i for each combination. Synergy: green cells - Additivity: yellow cells - Antagonism: red cells - ND: not determined.

- Tobramycin/Piperacillin and Piperacillin/Colistin combinations were synergistic.
- All combinations including rifampicin were synergistic against CF isolates.
- Minocycline/Chloramphenicol combination was synergistic against non-CF strains.
 - ➤ Rifampicin/Tobramycin and Piperacillin/Colistin were investigated by TKC studies against CFa and CFc isolates.

3. Time-kill curves (TKC) with the promising combinations

A rapid killing activity was observed over the CFa strain from 0.25*MIC of each antibiotic in combination (Fig 1A).

-- 0,25*MIC TOB 0.25*MIC RIF +TOB 0.5 CMIRIF+TOB ■ 0,25*MIC TOB

Fig 2. TKC data of Rifampicin/Tobramycin combination for CFc strain

- A concentration-dependant killing effect was observed on the CFc strain.
- No regrowth was shown at the highest concentrations in combination.

CONCLUSION

Two efficient antibiotic combinations against CF isolates were identified:

Piperacillin/Colistin is effective over strains that are susceptible to piperacillin

Piperacillin/colistin combination was not effective against the CFc strain (Fig 1B).

- Rifampicin/Tobramycin allows to treat the infections due to resistant strains to a wide spectrum
- The concentrations used in this *in vitro* study are not achievable in clinic due to their toxicity.

PERSPECTIVES

- In vitro studies are running on other A. xylosoxidans strains to confirm these results.
- Further investigations including *in vitro* dynamic time-kill study (hollow-fiber) on extended selection of strains and in vivo experiments are needed.

REFERENCES

¹Razvi et al., *Chest* 136, 2009; Salsgiver et al., *Chest* 149, 2016

²Hu et al., *AAC*, 2015

³Mensah et al., Eur J Clin Microbiol Infect Dis, 1990; Philippon et al., J. Antimicrob. Chemother., 1990 ⁴Gibson et al., Am. J. Respir. Crit. Care Med., 2003; Stobbelaar et al., Am. J. Med. Case Rep., 2016

⁵Duez et al, *J Chemotherapy*, 2010